Bacterial DNA Sifted from the Trichoplax adhaerens (Animalia: Placozoa) Genome Project Reveals a Putative Rickettsial Endosymbiont
نویسندگان
چکیده
Eukaryotic genome sequencing projects often yield bacterial DNA sequences, data typically considered as microbial contamination. However, these sequences may also indicate either symbiont genes or lateral gene transfer (LGT) to host genomes. These bacterial sequences can provide clues about eukaryote-microbe interactions. Here, we used the genome of the primitive animal Trichoplax adhaerens (Metazoa: Placozoa), which is known to harbor an uncharacterized Gram-negative endosymbiont, to search for the presence of bacterial DNA sequences. Bioinformatic and phylogenomic analyses of extracted data from the genome assembly (181 bacterial coding sequences [CDS]) and trace read archive (16S rDNA) revealed a dominant proteobacterial profile strongly skewed to Rickettsiales (Alphaproteobacteria) genomes. By way of phylogenetic analysis of 16S rDNA and 113 proteins conserved across proteobacterial genomes, as well as identification of 27 rickettsial signature genes, we propose a Rickettsiales endosymbiont of T. adhaerens (RETA). The majority (93%) of the identified bacterial CDS belongs to small scaffolds containing prokaryotic-like genes; however, 12 CDS were identified on large scaffolds comprised of eukaryotic-like genes, suggesting that T. adhaerens might have recently acquired bacterial genes. These putative LGTs may coincide with the placozoan's aquatic niche and symbiosis with RETA. This work underscores the rich, and relatively untapped, resource of eukaryotic genome projects for harboring data pertinent to host-microbial interactions. The nature of unknown (or poorly characterized) bacterial species may only emerge via analysis of host genome sequencing projects, particularly if these species are resistant to cell culturing, as are many obligate intracellular microbes. Our work provides methodological insight for such an approach.
منابع مشابه
Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum.
Mitochondrial genomes of multicellular animals are typically 15- to 24-kb circular molecules that encode a nearly identical set of 12-14 proteins for oxidative phosphorylation and 24-25 structural RNAs (16S rRNA, 12S rRNA, and tRNAs). These genomes lack significant intragenic spacers and are generally without introns. Here, we report the complete mitochondrial genome sequence of the placozoan T...
متن کاملAnimal Evolution: Trichoplax, Trees, and Taxonomic Turmoil
The genome sequence of Trichoplax adhaerens, the founding member of the enigmatic animal phylum Placozoa, has revealed that a surprising level of genetic complexity underlies its extremely simple body plan, indicating either that placozoans are secondarily simple or that there is an undiscovered morphologically complex life stage.
متن کاملTrichoplax adhaerens reveals a network of nuclear receptors sensitive to 9-cis-retinoic acid at the base of metazoan evolution
Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell) includes fou...
متن کاملPlacozoa are not derived cnidarians: evidence from molecular morphology.
The phylum Placozoa is represented by a single known species, Trichoplax adhaerens, a tiny marine organism that represents the most simple metazoan bauplan. Because of the latter, placozoans were originally considered the most basal metazoan phylum. A misinterpretation of the life cycle at the turn of the century and some more recent molecular phylogenetic analyses have placed Trichoplax as a d...
متن کاملSimple telomeres in a simple animal: absence of subtelomeric repeat regions in the placozoan Trichoplax adhaerens.
Simple telomeres were identified in the genome assembly of the basal placozoan animal Trichoplax adhaerens. They have 1-2 kb of TTAGGG telomeric repeats, which are preceded by a subtelomeric region of 1.5-13 kb. Unlike subtelomeric regions in most animals examined, these subtelomeric regions are unique to each telomere.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013